CSC 2224: Parallel Computer
Architecture and Programming
DNN Training and Inference:

Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto
Fall 2021

Review #7

Horizontally Fused Training Array
Shang Wang et al., MLSys 2021

OR

In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA’17,
Jouppl et al., https://dl.acm.org/doi/10.1145/3079856.3080246

Due Nov. 2nd

https://proceedings.mlsys.org/paper/2021/file/a97da629b098b75c294dffdc3e463904-Paper.pdf

Ll
N
%‘a’gia'i
@b
B8 |
A

UNIVERSITY OF

TORONTO

7\ VECTOR
INSTITUTE

—

DNN Training and Inference:
Challenges, Trends, State-of-the-Art

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

TPU Paper to Review

- In-Datacenter Performance Analysis of a Tensor
Processing Unit, ISCA’17, Jouppi et al.,

https://dl.acm.org/doi/10.1145/3079856.3080246

Systems/Architecture Is a Servant for ML

Diverse benchmark suite with
state-of-the-art models

Performance bottlenecks
in DNN Training

Analysis &
Optimizations

Tools Key performance metrics

DNN Training and Inference:
Challenges

1. Benchmarking

ISCA 2020

Diverse benchmark suite with
state-of-the-art models

Analysis &

Optimizations

Training Benchmarks for DNNs (TBD)

Applications Models Dataset # of layers Dominant layer
Image ResNet-30), ¢ 50 (152 max)
Classification Inception-v3 7, ¢ ImageNet 42 CONV
Machine Seq2seq 1y 5 LSTM
Translation Transformer 1, WSLTS 12 Attention
Object Detection Faster RCNN
Mask RCNN ; Pascal VOC 101 CONV
Speech -
Recognition Deep Speech 2, LibriSpeech 7 (9 max) RNN
Recommendation NCF , MovieLens 4 GMF, MLP
System
Adversarial WGAN - Downsampled 14414 CONV
Network ImageNet
Reinforcement A3C ,,, Atari 2600 4 CONV

Learning

Maintainer

Hongyu Zhu

Bojian Zheng
Andrew Pelegris

Hongyu Zhu
Zilun Zhang

Kuei-Fang Hsueh
Jiahuang Lin

[zaak Niksan

Andrew Pelegris

Mohamed Akrout

(Footnotes Indicate available implementation: T for , M for @xnet, Cfor 7K, P for pyréreH)

Our Focus: Benchmarking and Analysis

TBD Benchmark Suite B

Training Benchmark for DNNs % ToroNTO Research

Benchmarks Datasets Tools Analysis People EcoSystem (Univ. of Toronto) + Fiddle (MSR)

TBD - Training Benchmark for DNNs

TED is a new benchmark suite for DNN training that currently covers six major application domains and eight ditferent state-of-the-art models, The applications in this suite
are selected based on extensive conversations with ML developers and users from both industry and academia, For all application domains we select recent models capable
of delivering state-of-the-art results, We intend to continually expand TBD with new applications and models based on feedback and support from the community,

This is a joint project between the CeoSystem Research Group ar University of Toronto and Project Fiddle at Microsoft Research, Redmond.
We also have collaborators from UBRC and University of Michigan,

Onr benchmark suite is now open sonrced on GithubSe,

Read Full Arxiv Paper RibTeX Relerence SysML Shorl Paper

Application Modcl Number of Layers Dominant Layer Implementations Maintainers

Image classification ResNet-50 50152 max) CONV TeusorFlow, M3NVer, CNTK ITongyu Zhn
Inception-v3 42

Muchine wanslation Sea2Bea 5 L5T™ Tensorl Tow, MXNet Boitan Ahuns

Building tools to analyze ML
performance/efficiency

http://tbd-suite.al

MLPerf

A broad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ML cloud platforms.

Qithmiccinn NDeadlinea

Industry/Academia de-facto
standard

ttps://mlperf.or

http://tbd-suite.ai/
https://mlperf.org/

MLPerf Training Results v0.6 (July 10th, 2019)

Closed Division Times

Benchmark results (minutes)
Object

Image detection, |Object Reinforce-

classifi- light- detection, |Translation | Translation |Recom- ment

cation weight heavy-wt. |, recurrent |, non-recur.|mendation |Learning

MovielLens-

ImageNet |COCO COCO WMT E-G |WMTE-G |20M Go

ResNet-50 |SSD w/ Mask-
Submitter|System Processor |# |Accelerator|# Software v1.5 ResNet-34 |R-CNN NMT Transformer |[NCF Mini Go Details |[Code

6-1 |Google |TPUv3.32 ~J TPUv3 16| TensorFlow, TPU 1.14.1.dev| 42.19 12.61 107.03 12.25 10.20 [1] details |code
0.6-2 |Google |TPUv3.128 }RU\JS 64 |TensorFlow, TPU 1.14.1.dev 11.22 3.89 57.46 4.62 3.85 [1] details |code
0.6-3 |Google |TPUv3.256 TF‘Q‘UB 128|TensorFlow, TPU 1.14.1.dev 6.86 2.76 35.60 3.53 2.81 [1] details |code
0.6-4 |Google [TPUv3.512 TP}JUE 256 | TensorFlow, TPU 1.14.1.dev| 3.85 1.79 2.51 1.58 [1] details |code
06-5 |Google |TPUv3.1024 //-HSU\."S 512 |TensorFlow, TPU 1.14.1.dev| 2.27 1.34 2.1 1.05 [1] details |code
5:6-6 [Google |TPUv3.2048 ~ [TPUV3 1024 | TensorFlow, TPU 1.14.1.dev 1.28 1.21 0.85 [1] details |code
Available on-pramise I
0.6-7 |Intel 32x 25 CLX 8260L CLX 8260L|64 TensorFlow [1] 14.43 | details |[code
0.6-8 |NVIDIA |DGX-1 Tesla V100 8| MXNet, NGC19.05 115.22 [1] details |code
0.6-9 |NVIDIA |DGX-1 Tesla V100 8|PyTorch, NGC19.05 22.36 207.48 20.55 20.34 [1] details |code
0.6-1 DIA |DGX-1 \ Tesla V100 8| TensorFlow, NGC19.05 [1] 27.39|details |code
1{6‘-1)1]/ NVIDIA |[3x DGX-1 \{esla V100 24| TensorFlow, NGC19.05 [1] 13.57 |details [code
0.6-12 |[NVIDIA |24x DGX-1 TE\Ql@ V100 192 | PyTorch, NGC19.05 22.03 [1] details |code
0.6-13 |[NVIDIA |30x DGX-1 TESl%V‘]UU 240 |PyTorch, NGC19.05 2.67 [1] details |code
0.6-14 |[NVIDIA |48x DGX-1 TESI,J V100 | 384|PyTorch, NGC19.05 1.99 [1] details |code
0.6-15 |[NVIDIA |60x DGX-1 /}éla V100 | 480|PyTorch, NGC19.05 2.05 [1] details |code
616 |NVIDIA [130x DGX-1 ~__—1 [TeslaVV100 | 1040|MXNet, NGC19.05 1.69 [1] details |code

0.6-17 |N DGX-2 —1 Tesla V100 16 |MXNet, NGC19.05 57.87 [1] details [code
0.6-18 |NVIDIA |DGX-2 Tesla V100 16| PyTorch, NGC19.05 12.21 101.00 10.94 11.04 1] details |code

12

MVLPerf Inference Results v0.5 (Nov. 6, 2019)

Inf-0.5-14 | dividiti Firefly-RK3399 (firefly) 80.12 391.02
Inf-0.5-15| Google Cloud TPU v3 16,014.29 32,71
Inf-0.5-16 | Google 2x Cloud TPU v3 65,43
Inf-0.5-17 | Google 4x Cloud TPU v3 130,83
Inf-0.5-18 | Google 8x Cloud TPU v3 261,58
Inf-0.5-19 _CME 16x Cloud TPU v3 524,97,
-0.5-20| Google 32X Clnm 1,038,511
Inf-0.5-21|Habana Labs HL-102-Goya PCl-board > 0.24 700.00 14,45
-0.5-22 | Intel Intel® XeWmcessors
Inf-0.5-23 m ntel® Xeon® Platinum 9200 processors 0.49 27,244 .81 29,203.30 1.37 4,850.62 5,96
Inf-0.5-24 | Intel DELL ICL i3 1005G1 3.595 507.71 13.58 101
Inf-0.5-25|NVIDIA Supermicro 4029GP-TRT-OTO-28 8xT4 (T4x8) 6,320.00 135,073.00 141,807.00 1,920.00 41,546.64 44 97
Inf-0.5-26 | NVIDIA Supermicro 6049GP-TRT-OTO-29 20xT4 (T4x20) 103,532.10 113,59.
Inf-0.5-27 |NVIDIA SCAN 3XS DBP T496X2 Fluid (TitanRTXx4) 8,704.00 199,098.30 222,388.00 2,560.00 60,030.57 66,25
Inf-0.5-28 |NVIDIA NVIDIA Jetson AGX Xavier (Xavier) 0.58 302.00 6,520.75 2.04 100.00 2,15i
Inf-0.5-29 [Qualcomm SDM@RD 3.02 8.95
—
mwaba T-Head Alibaba HanGuang \ 0.17 2,692.00 45,169.48 69,30!
\IW-SZ Centaur Technology Centaur Technology Refe&u@e’ﬁesign v1.0 0.33 6,042.34 1.05 1,21

e ——

—

MLPerf becomes de-facto standard

MLPerf Training Benchmark

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wel, Peter Balilis,
Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta,
Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi lke, Bill Jia,
Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokal Ma,
Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian
Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsuguchika
Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff Young, and
Matel Zaharia

MLSys 2020

MLPerf Inference accepted to ISCA 2020

DNN Training and Inference:
Challenges

2. Tools and Metrics

Analysis &

Optimizations

Key performance metrics

18

Performance Metrics

. Throughput
Number of data samples processed per second

. Compute Utilization
GPU busy time over Elapsed time

FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions
per cycle

Memory Breakdown
Which data structures occupy how much memory

Tools

Analysis &

Optimizations

20

BERT: Memory Profile

B PositionwiseFFN
Q1 I AttentionCell
B Embed
1 Others [2V70
6- 7 Untrackable | 71%

LN

BR

N

] 19%

L A1%

Memory Consumption (GiB)

=

-

B Feature Maps
B Parameters

1 Others
271 Untrackable

Layer Data Structure
GPU Memory Consumption Breakdown

Feature maps are still dominant in many new models

Network Profiling

Our network profiler shows the communication traces

1,200 ms

I. |1.4ﬂﬂ ms |1,EDD ms |1,B{]D ms

- 537.659 ms. .

_ Push__convl_1_weight__1728

— I
I
I

22

Skyline Demo at MLSys 2020

L . .7 resnet.py — ~/projects/remote/skyline/resnet .

resnet.py i Skyline

‘ 105 class ResNet(nn.Module): = — & Training Throughput
def __init_ (self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None, =
norm_layer=None): (S THROUGHPUT

—
super(ResNet, self).__init__() 160
if norm_layer is None:
. samples/second
norm_Llayer = nn.BatchNorm2d
self. norm_layer = norm_layer
[} []
Interactive In-editor Performance s

red

self.dilation = 1

if replace_stride with dilation is None: PREDICTED IR

Visualizations and Debugging for DNN T st e s

t) NVOoL [} |

182

samples/sacond

1UE L LN LiaglElU O

replace_stride with_dilation = [False, False, False]

[] []
I ra I n I n 1f len(replace_stride_with_dilation) !'= 3: T
{g; raise ValueError("replace_stride_with_dilation should be None " o o

"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) =
self.qroups = groups = 2 Poak Memory Usage
self.base_width = width_per_group
self.convl = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,

bias=False)

self.bnl = norm_layer(self.inplanes)

PEAK USAGE

G ff X Y T N G self.relu = nn.RelLU{(inplace=True) 1575
eo rey) u’ OVI rOSS m a n’ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) Megabytes
self.layerl = self._make_layer(block, 64, layers[0])
° self.layer2 = self. make layer(block, 128, layers|l], stride=2,
G e n n a d y Pe k h I m e n kO dilate=replace_stride_with_dilation[@])
self. layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation(1])

self.layerd = self. make layer(block, 512, layers[3], stride=2, MAXIMUM CAPAGITY
dilate=replace_stride_with_dilation[2]) . == 7974
self.avgpeol = nn.AdaptiveAvaPool2d((1, 1)) — .
> Megabytes
self.fc = nn.Linear(512 % block.expansion, num_classes)
self.loss fn = nn.CrossEntropylLoss() .

VECTO R for m in self.modules(): Rea :,_ N

UNIVE RSITY OF I N ST I T U T E ~/projects/remote/skyling/resnet/resnet.py 105:25 LF UTF-8 Python O GitHub <O-Git (0) % 1 update

Eﬂu@ﬂ

TORONTO

¥

Tired of not knowing why your model is
slow and/or uses up so much memory?

Sam B Hal Daume lll > 4
@am owman @haldaume3
sleepinyourhat
Any tips onlidentifying speed bottlenecks (profiling)|with so./my pytorch code is slow.|what do people us for profiling?
@PyTorch? Right now bumbling along with cProfile. cProfile just tells me run_backward is expensive, which is not so

28 12:16 PM - May 26, 2017 useful...

2 See Sam Bowman's other Tweets

Q12 3:47 PM - May 7, 2017

Sam Bowman @sleepinyourhat - May 26, 2017 2 See Hal Daumé lll's other Tweets

~ Any tips on identifying speed bottlenecks (pr

@PyTorch? Right now bumbling along with ¢ :" Jeremy Howard
P @jeremyphoward

£%» Joachim Hagege

L

@JoachimHagege Does anyone have any detailed tips, walkthrus, or tutorials on

how to|profile @PyTorch code running on the GPU?|

Hi Sam. I'm|struggling with same issue right
Did you identify best practices since posting
Thanks !

© 10:32 AM - Nov 11, 2018

the time is spent.
O 312 10:29 AM - Oct 25, 2019

2 See Joachim Hagege's other Tweets O 62 people are talking about this

dvice for|debugging slow backw.. - ——_

% mrdrozdov Andrew Drozdov Apr'17
¥

| am working with a recursive neural network where the forward pass takes roughly 2s on average, and
the backward pass closer to 7 or 8s. Does this sound like normal behavior? | wonder what | could be
doing which is causing such a slowdown.

| have a lot of narrow/chunk/cat in the model. Could this be a factor?

created last reply 4 1.3k 4 1 1 m S,
ﬁﬂtprﬂ? “" Dec'17 replies views users like nk ‘a . b

I'm trying to optimize efficientnet and want to see exactly where

®

)3 people are talking about this

ion|running very slow?:|l a
mount of training set, it is t:
y code, | found the loss.bac
er, both score and target a

2019

r Tweets

lay.

®

> of codeland

her | know.

Model
Model
Model
Model
Model
Model
Model

time
time
time
time
time
time
time

on
on
on
on
on
on
on

dynamic attentior
| use two for loops

®

B Sam Bowman @sleepinyourhat - May 26, 2017

Any tips on identifying speed bottlenecks (profiling) with
@ PyTorch? Right now bumbling along with cProfile.

‘ Zico Kolter

7 @zicokolter

rsperse torch.cuda.synchronize() Iiberallylwhen debuggi

a code, to see where the bottlenecks acually are...

- 3:09 PM - May 27, 2017

see Zico Kolter's other Tweets

ely slow ‘

Profiling pytorch scripts?

&

hughperkins

I've written a pytorch script, am:l looking to speed it up.

I've tried the following:

* use acd.4xlarge, in cpu mode, instead of Mac OS X, in ¢
Mac ()
* Use an aws g2, in cuda mode == twice as fast as Mac lap

* use an aws p2, in cuda mode == another 50% as fast as
MNow at this point, I'm not sure which bits are slow

* [f it was a c++ script, that didnt use cuda, | might use eith
debugger, stop it, and store the stacktrace. do this eg 5-11
tend to me in man yof the stackiraces == this is the bottle

e if it was cltorch, or deepcl, well | pre-instrumented them w

* in pytorch cuda, | suppose | should use an nviida profiler”

Its not clear to me which bits of the program are taking the time.
at a higher level than nvidia profiler probably. Thoughts on idea:
pytorch?

Skyline

» Key performance metrics
(throughput, memory usage)

e |teration run time and
memory footprint
breakdowns

 |nteractive visualizations
linked to batch size
predictions

self.

self.
self.

self.

‘ e):
super{ResNet, 1it
f norm_1
norm sly
5 Lay
LT,
Lf.
re y11th L
ide with _dilat [Fe
stride with dilation) !
[
self.q
self.ba 1dth p grot
<0\ 3, elf.
ay self.a
el l ace=Tr
self.max n.M (K le=2,
self. Lay self. , ck, [0])
self. layer2 = self. m ek, rsl1],
ates: ride
1 f. £, ck, 5 [2],
ate ride_
Lf. Lf. ek, s3],
ate ide
self.avc ‘ [QP d((1, 1))
self.fc = nn.Linear(512 % block.expansion, num_classes)

Interactive In-editor Performance Visualizations
and Debugging for DNN Training

5
s

%
& i" 253

UNIVERSITY OF

% TORONTO

7\ VECTOR
INSTITUTE

lh |
THROUGHPUT
160
mples s
PREDICTED MAXIMU
182
mples/sacc
PEAK USAGE
1575
MAaxiMum CapacCITY

O.-“"‘.A, ©- Git {0) 7,\

OPyTorch &> ATOM

K |

'# resnet.py — ~/projects/remote/skyline/resnet

105

~(projects/remote/skyline/resnet/resnet.py

resnet.py

def

1t norm_layer 1is None:
norm_Llayer
self. norm_layer =

self.inplanes =

(self,
groups=1, w

class ResNet{nn.Mmdule)ﬂ
__1nit

block

norm_layer=
super(ResNet, self).

self.dilation
it replace_stride_with_dilation is None:

b4
1

Interactive visualizations tied to the code!

nn.BatchNorm2d
norm_layer

each element 1n the tuple indicates 1f we should replace
the 2x2 stride with a dilated convolution instead
replace_stride _with_dilation

[False, False, False]

if len(replace_stride_with_dilation) != 3:

self.groups

self.
self.

self.
self.
self.
self.
self.

base_width
nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,

raise ValueError("replace_stride_with_dilation should be None
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))

= groups
= width_per_group

convl =

bnl =

relu

maxpool =

bias=False)

norm_layer(self.inplanes)
nn.ReLU(inplace=True)

layerl =
layer2

nn.MaxPool2d(kernel_size=3,
self._make_layer(block, 64, layers|[0])
self. make_layer(block, 128, layers[1l], stride=2,

stride=2, padding=1)

dilate=replace_stride_with_dilation[0])

= . : . e _ N = S S :
105:25

Ly Skyline

& Training Throughput

Python

Weights

THROUGHPUT

159

samples/second

PREDICTED MAXIMUM

181

samples/second

£ Peak Memory Usage

Forward and Backward

Activations

PEAK USAGE

1572

Megabytes

MAXIMUM CAPACITY

7974

Megabytes

¢ GitHub

Ready

LF UTF-8 M 1update

-0 Git (0)

Interactive In-editor Performance Visualizations
and Debugging for DNN Training

Skyline

UNIVERSITY OF

% TORONTO

7\ VECTOR
INSTITUTE

Learn how to use Skyline to: 2 e ——
v’ Identifyrun time and memory g
bottlenecks

v’ Tunebatch sizes during
development ¢ e stide ity giaten 35U

V' Proactivelydesign models .o = . Cona, sl
with performance in mind R T e N
e R g e
W— gyt e
Skyline works with PyTorch models in Atom B

THROUGHPUT

EEEEEEEEEEEEEEEEE

samples/second

AAAAAAAAA

S pip install skyline-cli &&\
apm install skyline

O PyTorch

DNN Training and Inference:
Challenges

3. Methodology

Challenges for Metrics & Profiling

Specialized hardware for DNN training is a hot research area

Cerebras
Huawei Wafer-Scale
Da Vinci Engine
Core e
Nvidia
GPU o Vector TPU

LSU Scalar

Cache/Buffer

Accelerators are specially optimized for DNN training

Habana
Gaudi

31

Challenges for Metrics & Profiling (2)

Measuring statistical efficiency require end-to-end training

MLPerf Benchmark Training tiT:o?J?S';'Vidia P100
ResNet-50 147 2
Mask R-CNN 83 392
Transformer 31 16
MiniGo 73 14

Benchmarking could take many hours
even on powerful hardware

32

Challenges for Metrics & Profiling (3)

Option #1: On simulator

Simulator Speed

System level

STRATIX

inside

Real silicon

Source: David Kaplan, When hardware must just work

Option #2: On FPGA/ASIC

B

End-to-end training is prohibitively slow

Expensive and require
considerable effort

33

Performance bottlenecks
in DNN Training

Analysis &
Optimizations

34

DNN Training and Inference:
Trends and State-of-the-Art

DNN Training and Inference:
Trends and State-of-the-Art

1. Memory is still an Issue

Gist: Efficient Data Encoding for
Deep Neural Network Training

>

2018

37

Our Insight

Timeline | | |
Feature
map Generated 15t use 2"d yse
Baseline Feature map stored in FP32 format
Our < >
approach Encode() Smaller format between 2 uses /Decode()

38

Layer-Specific Encodings

¢ Key ldea:

— Use layer-specific compression

e Can be both fast and efficient

e Can be even lossless
— Usually difficult for FP32

Relu Importance

100%

30%

60%

40%

20%

Breakdown within feature maps

0%

B Rclu—>Pool B Reclu/Pool-—>Conv E Others

AlexNet (256) NiN (256) Overfeat (256) VGGI16 (64)

Significant footprint is due to Relu layer
CNTK Profiling

Inception (64)

40

Relu -> Pool

Relu Backward Propagation

Input Feature Output Feature
Map (X) Map (Y)

Output \/

Input
Gradient (dX) Gradient (dY)
dX = f(Y, dY)

dx =y >0 7?7dy:0;

Binarize — 1 bit representation
(Lossless)

41

Relu/Pool -> Conv

Sparsity analysis on VGG16 (10 epochs)

Sparsity

1x
0.8x —-
0.4x
0.2x
W ER L=
8 3 5 B
g 2

LRI RS B L (R R
cgm'd'ﬂ'oomlnoo
T2 3:iizzii
- L ", - e

Sparse Storage Dense Compute

(Lossless)

42

Opportunity for Lossy Encoding

Precision reduction in forward pass quickly
degrades accuracy

43

Delayed Precision Reduction

Training with Reduced Precision

100% —fsnanansaannuss
90% —}
80%
70%
60%
50%
40%
30%
20% - O Baseline—FP32 + Backward—-FP16 | "]

10% —f------ All-FP16 X Gist-FP§ |------
0% | | | | | | | |

0 10 20 30 40 50 60 70 80 90
Number of epochs

Training error rate

Delayed Precision Reduction
(Lossy)

Proposed System Architecture - Gist

o L

Execution graph

O 0O
./’.\
/! @
O
Identifies encoding Modified execution
opportunity graph
Efficient memory

sharing Memory allocation

for new data
structures

Compression Ratio

-

A [

P P
I I

Memory footprint ratio
against CN'TK baseline
P

Baseline B Lossless B [ossless -

—
= LA
pe pe

I

' AlexNet | NiN | Overfeat = VGG16 ' Inception ' geoMean

Up to 2X compression ratio
With minimal performance overhead

46

Gist Summary

e Systematic memory breakdown analysis for image classification
* Layer-specific lossless encodings

— Binarization and sparse storage/dense compute

* Aggressive lossy encodings

— With delayed precision reduction

* Footprint reduction measured on real systems:

— Up to 2X reduction with only 4% performance overhead
— Further optimizations — more than 4X reduction

47

Machine Translation |

mm 47

Echo: Compiler-based GPU Memory
Footprint Reduction for LSTM RNN Training

Bojian Zheng et al.

ISCA 2020 48

) =tatic reverse
L cified
O. o:
Olo-®

. Rebuild
Tramning loop stafic graph with
(days) rematerialization

CHECKMATE: BREAKING THE MEMORY WALL
WITH OPTIMAL TENSOR REMATERIALIZATION

—
wn
G
ws)

tn
G
ws)

P construction
and nptimizaﬁﬂﬂ

Total memory consumed
=
@
o

(minutes)

n [
4_4/Iirﬂ rmin ZZ{-'"”“ 0GB
| =1
>

R.S.U FREE .

—

- w B o =
MMMMMM

M
(=
—h
o

0

|

L
g10¢g &

Paras Jain et al. (UC Berkeley)

MLSys 2020

49

There are many more

* NeurlPS 2019
* Another paper at ISCA 2020 (jpeg encoding for CNNs)

DNN Training and Inference:
Trends and State-of-the-Art

2. Distributed Training:
Algorithms and Networking

............

Priority-based Parameter Propagation (P3)
for Distributed DNN Training

Anand Jayarajan et al.

SYSML

2019

P3 Followups

* TicTac from UIUC
* BytePS (SOSP’19) from ByteDance

PLink: Discovering and Exploiting Locality for
Accelerated Distributed Training on the Public
Cloud-based Distributed Systems

UW and Microsoft Research

MLSys 2020

Blink: Fast and Generic Collectives for
Distributed ML

UC Berkeley, U of Wisconsin, and Microsoft Research

MLSys 2020

Challenge 1: Ditferent server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2" Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.

56

Challenge 2: Link heterogeneity

PCle topology NVLink topology

Ring-based collectives can only utilize homogeneous links.

o5/

Challenge 3: Fragmentation in multi-tenant clusters

Percentage of
Multi-GPU jobs

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation? E——) Irregular topo. = no ring

Many cluster schedulers are not topology-aware. Existing solutions (NCCL) fall back to

Without support for efficient migration, DNN jobs PCle if they cannot form a NVLink ring.

must embrace fragmentation to avoid queuing delays. 58

How Blink handles topology heterogeneity

Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over
heterogenous links

Spanning trees (v.s. Rings) are more
flexible and optimal.

NCCL-compatible API, seamless
integration with TF, PyTorch, etc.

59

Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang'?, Yifan Bai', Gennady Pekhimenko?-?

2

. VECTOR
=+ Computer Science ? INSTITUTE
> UNIVERSITY OF TORONTO

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

Problem: BP imposes a strong sequential dependency along layers during the

gradient computations.

Key idea: We propose scaling BP

e Reformulate BP

by Parallel Scan Algorithm (BESA):
H4NTE 3 S -@-pera’ﬁ@n ern e na e nannnn

e Scaled b e?lc sted gr llel

Key Results: G(Iog\n) Vs, G(n) ste
Up to 108>+ bh%kw':r]ﬂaaMed

B

A []

ps on parallefsystems\

b fsfors) oo

\

*

28

61

Back-propagation® (BP) Everywhere

How do we get the
gradients for our SGD?

TensorFlow

"‘Rumelhart et al. “Learning representations by back-propagating
errors.”, Nature (1986)

62

BP’s Strong Sequential Dependency

X
HEE B
i i ‘H: af (%) Vl af (e)
f(X) - 0% // O
- Jacobian ¢

=.

>\ 1
0f (X)

HEEER

Strong Sequential Dependency along layers.

HEEE F----*E

H

HEEEN

af ()" V.
)

63

Data Parallel Training

Respects BP’s strong sequential
dependency.

Conceptually simple, widely used.

Effectively increases the batch size:

* Generalization gap?
* Batch size scaling limit?

Constraint: The model must fit in
one device.

IKeskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017) 64
’Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Model Parallel Training

Used when the model cannot fit in one device.
BP’s strong sequential dependency limits scalability.

Prior works on pipeline parallel training'? to mitigate such problem,

but have their own limitations:

* Linear per-device space complexity.
* Trade-off between “bubble of idleness” vs. potential convergence affect.

-

Vi1l

'Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
’Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurIPS (2019)

65

Rethinking BP from an Algorithm Perspective

* Problems with strong sequential dependency were
(80’), but in @ much simpler context. o

* We propose scaling Back-Propagation by Parallel Scan
 Reformulate BP as a scan operation.
* Scale BP by a customized Blelloch Scan algorithm.
* Leverage sparsity in the Jacobians.

66

What is a Scan' Operation?

Binary, associative operator: + ldentity: ©
Input sequence: 1 2 3 4 5 6 7
r\\\r\
U =
Exclusive scan: 0 1 3 6 10 15 21

Compute partial reductions at each step of the sequence.

1Blelloch, Guy E. “Prefix sums and their applications”. Technical Report (1990)

Linear Scan

1 2
Step: executing the I
operator once. | 3

Number of Elements (n)

Worker (p): an instance of execution;
e.g., a core in a multi-core CPU

On a single worker: perform scan
linearly; takes n steps.

With more workers: Can we achieve
sublinear steps?

1 10

1 15

121

Up-sweep

A

1

B

1

" A+B

Compute partial sums
via a reduction tree.

3

Blelloch Scan: @) Up-sweep Phase

5

111

1 15

1 26

69

Blelloch Scan: @ Down-sweep Phase

Parallel

Down-sweep

A B
T
— 1 |

B A+B

Combine partial sums
across branches.

5

6
l

1 2 3 4
l l

1 3 7

l
10
10

|

3 %,

1 %, 3 3
]
5, 1 3 6

111

-
-

Blelloch Scan: Efficiency

(112

l

1 3
Logarithmic

steps along the | 2logn <

critical path.

3

1 7,

=

Reformulate BP as a Scan Operation

G;= V3l
[[[— ax}i-l-l
Binary, associative operator: +A O B=BA |dentity: @ Jit1™ (9%;

nput sequence:

Exclusive scan: |

Key Insight: matrix multiplication in BP is also binary & associative!

y

72

Scale BP by
Blelloch Scan

Logarithmic
steps along the | 2logn <
critical path!

k-

-
—————_———

i
G,

—— e e
e T ———

Down-sweep

Matrix
multiplications are
noncommutative.

Reconstructs the Original BP Exactly

Our method produces gradients mathematically equivalent to BP.
The Jacobians are multiplied in a different order - numerical differences.

Empirically show that such differences do not effect convergence.
Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

: Baseline, train | | TTTTTTe 1 Baseline, test
2.2 \ --== Blelloch, train 2.2 -+« Blelloch, test
% .
2.0 -
N 2.0
'Vl
"il‘"n 8
n 1.8 - "'E.ti:_-g: A 1.8
= 523, S
1 6 . :a' :i
?ﬁﬁ‘ ‘i] 1.6—
= 2 '-.“ﬁl.] i "5.‘
1.4 : 44 %
v il Sy, '.v‘
¥ Al 1.4- g
1.2 Vea,
0 2000 4000 6000 8000 0 2000 4000 6000 8000
lterations (# of batches) Ilterations (# of batches)

(a) Training loss per iteration. (b) Test loss per 1teration. /4

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

e e.g., 1t convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.

* Generated one row at a time by passing basis vectors into Op Grad() (the VJP
function).

Conventional ML algorithms avoid using Jacobians directly

~ lincluding BP),

[0]

0]

[0]

ML Alo

[0]

Coi

o‘f

Coi —Coi

Co1

Coi
Conv2d_Grad(

Conv2d_Grad(]0))

> 9
— T -
- . ‘ \ ; [
ﬁ. +
-_— - ey (

i Jacobiansss

B imgflip.com

—_o OO0 O O
—

O OO0 OO

/5

The Jacobians of Many Operators are Sparse

Non-zeros | Possible Zeros J Guaranteed Zeros

Guaranteed zeros:

Known ahead of training time.

Deterministic pattern.

Potentially better SpGEMM
performance.

RelLU MaxPool2D

First three ops of Convo RelL Max

VGG-11 on CIFAR- | lution Poolin

76

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,

generate directly into Compressed Sparse Row (CSR):

e
Conv2d, W m indices
0 1 2 2 4 @mullud \

First three ops of Convol RelU

VGG-11 on CIFAR-
10

Complexity Analysis

Per-step Complexity (C): runtime of each step.

Runtime:
BPPSA BP

CBp}SA O(logn) vs. CBPG)(II)

Performance benefits: In-olace

1. Large n: deep network, long sequential dependency.

2. Reducing per-step complexity: SpPGEMM. Up-sweep Down-sweep
A B A B

Constant per-device space complexity!

 BA B AB

Methodology: Benchmark

Model: RNN Task: Bitstream Classification

flgk) = tanh (W hxgk) + b ih + Whhh(k) + bhh)

o8- BE

()~ Bernoulli(0.05 + %) x 0.1)

0

0

1

/9

Methodology: Environment

Hardware: RTX 2070

Baseline: CUDNN 7.5.1

O PyTorch 1.1

Implementation: custom CUDA 10 kernels.

RTX 2080 Ti

7.6.2

1.2

30

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline

when batch size B=16,

2.4

N
N

Training Loss

=
[o%)

1.6

1.2

\

—Baseling == S

sequence length T=1000:

Numerical differences do not effect
convergence.

2.17x% speedup on the overall training time.

500

1000

1500

2000 2500 3000
Wall-clock Time (s)

3500 4000 4500 5000

31

Speedup

10 | I

Sensitivity Analysis: Model Length

Backward Pass Speedup over Baseline

108X =

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

until being bounded by the
number of workers (p).

ele gth (T)

32

Speedup

16
8
4
2
1J

Sensitivity Analysis: Number of Workers

Backward Pass Speedup o

Fraction of GPU per sample (1/B)

reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1/256
F ctio fGPUp S mpI (1/B)

33

Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti)

00000000000

Latency (ms) per Iteration

Sequence Length (T)

Latency (ms) per Iteration

SM: Streaming Multiprocessor;
i.e., “Parallel Cores”.

Fraction of GPU per Sample (1/B)

34

More Results in the Paper

* End-to-end benchmarks of GRU training on IRMAS.

— A more realistic version of the RNN results.
* Pruned VGG-11 retraining on CIFAR-10.

— Microbenchmark via FLOP measurements.

— Evaluate the effectiveness of leveraging the Jacobians’ sparsity in
CNNSs.

Conclusion

BP imposes a strong sequential dependency among layers during the
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm
(BPPSA):

 Reformulate BP as a scan operation.
* Scale by a customized Blelloch scan algorithm.
* Leverage sparsity in the Jacobians.

Key Results: O(log n) vs. ©(n) steps on parallel systems.
Up to 108x speedup on the backward pass (- 2.17x overall speedup).

DNN Training and Inference:
Trends and State-of-the-Art

3. Inference:
More Solid Quantization and Pruning

Speed and Size Tradeoffs for Original and Pruned Models

fon o~ e

et
| R

85

o0
o

Top 1 Accuracy (%)

=3}
g]

w0 w w
g% = on

Top 5 Accuracy (%)

88
86
84
10" 10’ 10" 10° 10"
Number of Parameters Number of FLOPs
—8— MabileNet-v2 (2018) ResNet(2016) —8— VGG (2014) —8— EfficientNet (2019)
MohbileMet-v2 Pruned FezMet Pruned VGG Pruned

What is the State of Neural Network Pruning?

MIT

MLSys 2020
88

* We aggregated results across
81 pruning papers

* Mostly published In top venues

* Corpus closed under
experimental comparison

of LI

arXiv only

NeurlPS 16
ICLR 11
CVPR S
ICML 4
ECCV 4
BMVC 3
|[EEE Access 2

Other 10

89

90

Top 5 Accuracy (%)

-&— VGG (2014)
VGG Pruned

e

10° 10"

Number of FLOPs

-0 ResNet (2016)
ResNet Pruned

—e— EfficientNet (2019)

90

ResNet-50 on ImageNet

0 .
;\3‘
=9 .
%5 mm 2016
= S 2017
Sf =4 mm 2018
o 2019
@)
= -6

1 2 4 8
Compression Ratio

(Dataset, Architecture, X metric, Y metric, Hyperparameters) - Curve

91

4

VGG-16 on ImageNet AlexNet on ImageNet ResNet-50 on ImageNet

N NN RN

N

Change in
Top-1 Accuracy (%)
o

-2
-2 2 3
4 2015
-3
—4 —
1 2 4 8 16 2 4 8 16 1 2 4 8 16 2016
Compression Ratio Compression Ratio Compression Ratio mm 2017
X
< 2 -0.5 ~1 2019
CO . _
o © -1.0 | 9
o) 3 -
c 3 0 -1.5
c <
O -3
L =2 -2.0
= -2.5 ~4
-4
2 4 6 1 2 3 2 3

Theoretical Speedup Theoretical Speedup Theoretical Speedup

VGG-16 on ImageNet AlexNet on ImageNet ResNet-50 on ImageNet

1 >
) 0 4 0 %
> 5 \ i .U
= %‘ I Yo, -1 "
D -1
2o 0 i ~— ¥ -2
o O
c < %
O Y -2 -3
A —2
O I . 4 w2015
-4 A -
]
1 2 4 8 16 2 4 8 16 1 2 4 8 16 2016
Compression Ratio Compression Ratio Compression Ratio . 2017
4 0.0 \ 0 * e 2018
2
= 09 - P 201
2 : R— . 019
v O -1.0 ,
o) 3 —_
0
S 8 -1.5
c <
O — -3
A —2 v -2.0
@
- -2.5 —4
—4 A
2 4 6 1 2 3 2 3
Theoretical Speedup Theoretical Speedup Theoretical Speedup

93

* Presence of comparisons:
* Most papers compare to at most 1 other method
* 40% papers have never been compared to
* Pre-2010s methods almost completely ignored

* Reinventing the wheel:
* Magnitude-based pruning: Janowsky (1989)
* Gradient times magnitude: Mozer & Smolensky (1989)
* “Reviving” pruned weights: Tresp et al. (1997)

94

AcCcuracy

O
©

-
0o

&
~

O
o

-
U

1

Cl FAR-VGG

2 4 38 16
Compression Ratio

tTete

ResNet 50

Method A
Method C
Method B
Method D
Method E

2 4 8 16
Compression Ratio

32

95

0.70

0.65

o O
Un o
U -

AcCcuracy

O
U
o

0.45

0.40

ResNet-18 on ImageNet

—o— Method A
—a— Method C
—i— Method B
—4— Method D

1 2 4 8
Compression Ratio

16

1

2 4 8 16 32
Theoretical Speedup

96

AcCcuracy
e e
~J o0 O

&
o

O
U

ResNet-50 on CIFAR-10

- \Neights A
o= \\eights B

1 2 4 8 16 32 064
Compression Ratio

97

Memory-Driven Mixed Low Precision Quantization for
Enabling Deep Network Inference on Microcontrollers

Universita’ di Bologna, Bologna, Italy

MLSys 2020

DNN Training and Inference:
Trends and State-of-the-Art

4. ML Compilers

Existing Efforts : Pros and cons

* TVM, XLA, Glow, PlaidML

— Don’t perform well for training

— TVM can be 2-3 orders of magnitude worse on important kernels

* We need a new ML compiler with representative IR
— Any thoughts? Why not ML IR?

* We want LLVM-like style optimizers

— E.g., we can try all three major approaches to footprint reduction together

CSC 2224: Parallel Computer
Architecture and Programming
DNN Training and Inference:

Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto
Fall 2020

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

